Addressing Global Warming

David G. Hawkins, NRDC June 23, 2003

Self-Interest = Cooperation

- No country acting alone can manage the finite global carbon budget
- Common strategic interest in minimizing consumption of global carbon budget
- Action required now to avoid high-carbon lock-in
- Delay sacrifices safer targets
- Opportunities for cooperation

Growth in Energy CO2 Emissions

SHRINKING CARBON BUDGET

Ask not, "How big is the pie?" Ask, "How much of the pie is left?"

Budget for 450 ppm Stabilization (1900-2100)

Required Clean Energy Build Rates

Equilibrium Global Warming (deg. C)

Sources: Caldeira, et al, Science, 3/28/03 and IEA, WEO 2002

No Time to Waste: U.S. Example

- Compare three scenarios—
 - -BAU
 - DOE Carbon Sequestration Roadmap
 - Stabilization of CO2 Concentrations
- Major effort needed to go from BAU to Roadmap and from Roadmap to Stabilization

U.S. CO2 Forecasts to 2050 BAU v. DOE CCS Roadmap

CO2 Reductions in DOE Roadmap

CCS Capacity in Roadmap

Future U.S. CO2 Emissions Impact of Delay on Stabilization Options

Role of Carbon Capture and Storage

- Potential third horse in Troika:
 - Energy Efficiency
 - Renewable Energy
 - "Emission-free" fossil fuel (CCS)
- Large technical and policy challenges:
 - Keep priority on efficiency and renewables
 - Demonstrate CCS viability to both business and the public

Some Opportunities for International Cooperation

- Use "capture ready technology for new coal plants
- Pursue early low-cost demonstrations of geologic storage using existing, CO2-rich industrial gas streams

Two-Thirds of World Coal Capacity in 2030 is NOT Yet Built

Source: IEA, WEO 2002

World New Coal Additions by Decade. Catch the Wave or Miss the Wave?

Incremental new coal by decade

Source: IEA, WEO 2002

Economics of capture-ready coal

Costs for 100 GW of new coal capacity:

- Baseline: \$126 billion (USC w/ SO₂ scrubber)
- Capture-ready: \$138 billion (IGCC w/ pre-investment for carbon capture)
- Increment: \$12 billion (9%)

Source: SFA Pacific Analysis for NRDC, Oct. 2002

Cooperative Geologic Storage Demos

- Need multiple early full-scale experiences with geologic injection of CO2
- Lowest cost opportunities would use CO2-rich industrial gas streams
- Large CO2-rich sources operating in a number of regions (U.S., China, Europe)
- Resource: IEA GHG Programme database on point sources and reservoirs

Sources and Reservoirs

Early opportunities study

Policy Matters!

"While technology and market development is driven by the private sector, government has a key role to play in sending clear signals to the market about the public good outcomes it wishes to achieve."

IEA, Creating Markets for Energy Technologies (Paris, 2003).

Policy Matters!

U.S. Refrigerator Energy Use v. Time

